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ABSTRACT
Context: RNA secondary structure prediction depends on the situa-
tion: when only a few (sometimes putative) RNA homologs are
available, one of the most famous approach is based on a set of
recursions proposed by Sankoff in 1985. Although this modus ope-
randi insures an algorithmically optimal result, the main drawback lies
in its prohibitive time and space complexities. A series of heuristics
were developed to face that difficulty and turn the recursions usable.
Results: In front of the inescapable intricacy of the question when
handling the full thermodynamic model, we come back in the pre-
sent paper to a biologically simplified model that helps us focusing
on the algorithmic issues we want to overcome. We expose our
findings and forthcoming developments by using the constraint para-
digm which we believe is a powerful framework for heuristic design.
By doing so, we show that the main heuristics proposed by others
(structural and alignment banding, multi-loop restriction) can be refi-
ned in order to produce a substantial gain both in time computation
and space requirements. An implementation of our approach, named
ARNICA, exemplify that gain, specially on sample sets that often
remain unaffordable to other methods.
Availability: The sources and sample tests of ARNICA are available
at http://centria.di.fct.unl.pt/~op/arnica.tar.gz
Contact: olivier@perriquet.net

INTRODUCTION
The interest for RNA secondary structure prediction in the last deca-
des may be driven by the combination of two reasons, a biological one
and a theoretical one. From the biological viewpoint, RNA secon-
dary structure prediction is a challenging problem to help bridging
the gap between the different levels of description of the structure
(Marti-Renomet al., 2008; Shapiroet al., 2007). The discovery of
new families of non-coding RNA (ncRNA) demands adapted tools to
predict or at least provide information about their structure, and the
programs that compute secondary structure naturally organize them-
selves along several noticeable directions that implicitly depend on
their context of use. When the family of sequences under considera-
tion is large enough and if the sequences are not too divergent, then
hopefully a good multiple alignment can be reached by sequence
alignment methods ((O’Brien & Higgins, 1998) assess the reliabi-
lity of such methods for rRNA) or by semi-automated methods.The
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structure prediction programs based on covariation analysis (Eddy
& Durbin, 1994; Knudsen & Hein, 2003) can then handle the ali-
gnment and they have proven to be very accurate in guessing the
structure in that context. With a small family of poorly conserved
RNA sequences, a good starting alignment can hardly be construc-
ted, resulting usually in the inapplicability of the methods based
on pre-alignment. In that second context it makes sense to seek
the alignment and the structure at the same time. Sankoff (Sankoff,
1985) pioneered the field by exhibiting a set of recursions toopti-
mally compute the best structural alignment of two RNA sequences
when the structure is not known a priori. These recursions can be
straightforwardly extended toN sequences and can also handle
the energy parameters traditionally used for energy minimization
(Mathewset al., 1999). Although the time and space complexities for
two sequences remains polynomial (resp.O(n6) andO(n4) if their
lengths are the same order of magnituden), the algorithm is not app-
licable without heuristic adaptations. From this more abstract point
of view, RNA structural alignment becomes a challenging problem
in terms of algorithmic issues. Diverse heuristic ideas were applied
in able to turn the recursions usable. The first implementation of
the Sankoff recursions was DYNALIGN (Mathews & Turner, 2002;
Harmanciet al., 2007) that reduced the complexity toO(M2n2)
in space andO(M3n3) in time, whereM is a (tunable) hard con-
stant which bounds the shift allowed between the two sequences.
Havgaardet al.(2005, 2007) (FOLDALIGN) investigated further by
combining different other restrictions, namely:

• alignment banding: like in DYNALIGN the maximal shift
between the sequences is bounded by a constantδ

• structural banding: the default behavior for the program is to
perform a local alignment and the maximal size for a common
motif is bounded byλ

• multi-loop restriction: the structure bifurcativity is limited in
multi-loops

The resulting space and time complexities in FOLDALIGN become
0(n2λδ) and0(n2λ2δ2). The Vienna RNA Package also proposes
an alternative attempt PMComp (Hofackeret al., 2004) which is
implemented as part of the RNAfold program and makes use of the
McCaskill algorithm to compute the probabilities of base pairings
for a single sequence (McCaskill, 1990). The authors of FOLDA-
LIGN then revisited the idea by integrating their banding heuristic
to PMComp (Torarinssonet al., 2007).
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Although these heuristics allow the application of the algorithm
of Sankoff on natural RNA sequences, still remain some recalcitrant
contexts where the method stays inapplicable. When the sequences
under consideration show a large difference of length, poorcon-
servation at the primary level or important structural variations, all
Sankoff-based method eitherdo not apply or– if they do – the banding
heuristics prevent the algorithm from finding the correct structure,
while the memory and time consumption explodes. One of the main
drawbacks of this kind of heuristics is their global nature:they cannot
take advantage of local similarities in the sequences. Whenperfor-
ming a global structural alignment, the shift restrictionδ should be at
least the difference of length between the sequences. FOLDALIGN
bypass the later difficulty by doing local alignment as a default beha-
vior. In this paper we prove that the banding can be local, which
results in a huge gain, both in memory and time consumption. We
also propose a strategy to guaranty optimality in our framework even
if we are using a heuristic. Our proposal could be improved ifit were
combined with other heuristics (for instance a branching restriction
like the bifurcation constraint of FOLDALIGN) but with the loss
of the guaranty for optimality. The strategy is presented interms of
constraints, we believe indeed that the constraint paradigm (already
in use for other kind of methods, like CONSAN (Dowell & Eddy,
2006) orSTEMLOC (Holmes, 2005)) is helpful and relevant to model
the forthcoming improvements of our method. We observe thatthe
recursions of Sankoff are a natural combination of the two kinds of
recursions it is supposed to extend: sequence alignment andsecon-
dary structure prediction. Likewise, a structural alignment may be
modeled as a subgraph of a combination of two graphs - an ali-
gnment graph and a folding graph. Imposing structural constraints
on those graphs may lead to efficient heuristic design. The authors of
FOLDALIGN already proposed a combination of constraints oneach
of these graphs, namely alignment banding and structural banding ;
we propose a framework that allows more accurate constraints.

1 APPLYING CONSTRAINTS ON THE
RECURSIONS OF SANKOFF

Alignments –An alignment of two sequences may be seen as a sub-
graph of the full bipartite graph where the nodes are the respective
positions in each sequence. Such a subgraph (see Figure 1) issaid
to be an alignment if the following conditions (1) and (2) hold.
Moreover, we impose the extra restriction of maximality (3)

(1) the arity of each node is at most one

(2) there is no crossing edge (we assume the nodes are placed in the
sequence order)

(3) no edge can be added without breaking one of the two former
requirements

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5 b6

a1 − a2 a3 a4 a5 −
b1 b2 b3 b4 − b5 b6

Fig. 1. An alignment can be seen as a subgraph of the full bipartite graph,
we highlighted here the subgraph corresponding to a sample alignment

If the graph were not maximal in the sense of (3), it would mean
that somewhere a deletion followed by an insertion would be prefer-
red to a substitution. When the edges and remaining free bases are
weighted according to the usual scoring schemes for two sequences,
with linear or affine gap penalties (Needleman & Wunsch, 1970;
Eppsteinet al., 1988, 1992a,b) such an alignment is automatically
disqualified, since an appropriate shift of the corresponding bases
would result immediately in an alignment of better score.

Secondary structure –Once again we consider the sequence as a list
of nodes drawn in increasing order. Following the usual definition, a
secondary structure is a subgraph of the full graph on these nodes with
no crossing edge when drawn in a half plane (a so called outerplanar
graph) and for which the node arities are at most one.

b1 b2 b3 b4 b5 b6

[ [ . ] ] .
b1 b2 b3 b4 b5 b6

Fig. 2. A secondary structure and the corresponding subgraph

In our framework, a structural alignment of two sequences can be
represented as a combination of three graphs: an alignment graph
and two structure graphs, like in Figure 3. In the following,we will
call structural envelope any supergraph (built in the same fashion)
that contains the structural alignment we seek.

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5 b6

[ [ ] . ]
a1 − a2 a3 a4 a5 −
b1 b2 b3 b4 − b5 b6

[ . [ ] ] .

Fig. 3. Example of a structural alignment seen as a subgraph of its structural
envelope. The structural envelope holds no constraint here.

In practice, the structural envelope is not the full graph. For
instance the steric constraints of the molecule imply that the mini-
mal size for a loop should be three bases, consequently we can
already remove all the edges that do not fulfill that constraint. In
the next section, we investigate how the efficiency of the algorithm
can be improved when extra constraints are imposed on the structural
envelope.

The recursions of Sankoff –The recursion set used in RNA predic-
tion methods based on free energy minimization (Jaegeret al., 1989;
Zuker et al., 1999; Zuker, 2003; Hofacker, 2003) is a more com-
plex version of the Nussinov formulas (Nussinov & Jacobson,1980).
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These formulas, in return, can be seen as such an energy minimiza-
tion method in the oversimplified model where each pairing counts
for one. Likewise, we express here the recursions given by Sankoff
in the same simplified model and we discuss later how far we can
extend it to a more sophisticated model with no loss in complexity.

We noteseq0 = seq0[1..n] and seq1 = seq1[1..m] the two
sequences in use. The Sankoff recursions in the simplified model
of weighted pairing maximization are:

e [i, j, k, l] := MAX
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

• e [i, j − 1, k, l − 1] + align_base(seq0[j], seq1[l])
• e [i, j, k, l − 1] + gap_penalty()
• e [i, j − 1, k, l] + gap_penalty()
• e [i, x − 1, k, y − 1] + e [x + 1, j − 1, y + 1, l − 1]+
match_pair(seq0[x], seq0[j], seq1[y], seq1[l])
[i 6 x 6 j] [k 6 y 6 l]

The valuee [1, n, 1, m] gives the best score for a structural ali-
gnment in that model. Any of the corresponding best alignments can
be retrieved in linear time by tracing back into the dynamic program-
ming matrix if the corresponding pairings that maximize thescore
were stored during the search, which would require only0(n2 )space.
In that form, the Sankoff recursions appear to be a combination of
the recursions for sequence alignment (Smith & Waterman, 1981)
and the recursions for secondary structure prediction of Nussinov.
The algorithm can integrate any Boolean restraints imposed(by the
user or by automated methods) on the structural envelope by simply
assigning an infinite score to the forbidden matches. What weshow
is that these constraints can be used to reduce both memory and time
consumption.

Constraining the alignment –In the following, any pair of objects
(bases, indices, segments...) are calledforeign if they do not belong
to the same sequence. Two foreign bases (or their index in the
sequence) are said to bealignables if they are allowed to parti-
cipate to the final alignment. The resulting subgraph is called the
alignment envelope. In Figure 4, we show such an alignment enve-
lope where we only represented the edges for two foreign indices.
For a given indexi of arity Mi in the first sequence, we note
ai = ai[0 .. Mi] = { ai[0] , .. , ai[Mi] } the list of its aligna-
ble bases, and fork in the second sequence, of arityNk, the list of
its alignable bases in the first sequence is notedbk.

i

ai[0] ai[Mi]k

bk[0] bk[1] bk[Nk] i

ai[0] ai[δ]

Fig. 4. On the left are represented the listsai andbk of alignable bases for
some indicesi andk. We noteMi the length ofai andNk the length ofbk.
The figure on the right shows the list of contiguous indices for an arbitrary
indexi when using a sequence banding heuristic with a fixed global constant
δ, like in DYNALIGN and FOLDALIGN.

Alignable bases in a list do not need to be contiguous in the
sequence. The sequence banding heuristic used in DYNALIGN and

FOLDALIGN would give for any index a list of contiguous basesof
fixed lengthδ where the value forδ is a global constant.

Our claim is that we just need to allocate for each pair(i, j) a
square matrix of sizeMi × Mj (Figure 5). The value in the cell
[i, j, x, y] stores the score for the best structural alignment between
the segmentsseq0[i..j] andseq1[ai[x]..ai[y]]. When looking a bit
closely to the recursion formulas, it appears that during the compu-
tation process, we may fall out of the allocated part. We prove that
the best structural alignment between any segmentsseq0[i..j] and
seq1[k..l] can be retrieved in constant time from the allocated part.

Figure 5 displays a possible layout for the 4-dimensional matrix,
where the outer matrix is related to the first sequence and thesmal-
ler inner matrices to the second one. But the modeling is actually
perfectly symmetric. Likewise, if we had focused on the second
sequence and allocated the inner matrices based on the listsbk and
bl, the overall matrix would result in exactly the same size. The
size of this 4-dimensional matrix

P

(i,j) Mi × Mj = (
P

i Mi)
2 =

(
P

k
Nk)2 =

P

(k,l) Nk×Nl is the square product of the number of
edges in the alignment envelope, and the matrix itself can beconsi-
dered as labeled by the edges of the alignment envelope: each4d-cell
[i, j, x, y] is indeed related to the unique pair of edges(i, ai[x]) and
(j, aj [y]).
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j

aj[0]

k
i

m

l

m

0

0 aj[Mj]

ai[0]

ai[Mi]

Fig. 5. The 4-dimensional matrix used for the computation of the best struc-
tural alignment can be represented as a bi-dimensional matrix, each cell
being a bi-dimensional matrix. The value in the cell[i, j, x, y] stores the
score for the best structural alignment between the segments seq0[i..j] and
seq1[ai[x]..ai[y]].

Claim – The scoree [i, j, k, l] can be retrieved in constant time
from the reduced matrix of Figure 5.

Proof – Let’s assume that during the computatione [i, j, k, l]
falls out of the allocated matrix. This means that eitheri andk are
not alignable and/orj and l are not alignable. We detail the right
hand case, the other one is symmetric. Given two non-empty foreign
segments[i..j]and[k..l], if j andl are not alignable then eitherj align
with some base in[k..l], or l with some base in[i..j]. Otherwisej
andl would both create an indel and the optimal alignment of the two
segments would then result in a double indel which was previously
assumed to be more expensive than a substitution. Let’s assume first
thatl aligns with a base in[i..j]. Consequently[i..j]

T

bl 6= ∅. Let’s
callβl = max([i..j]

T

bl). Every base of the segment[βl+1..j] has
no alignable partner in[k..l] or it would contradict the maximality of
βl. The remaining sequenceseq0[βl+1..j] has no other possibility
than being deleted, resulting in a(j −βl) long gap in the alignment.
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This gives:

e [i, j, k, l] = e [i, βl, k, l] + (j − βl) ∗ gap_penalty

If l does not align, thenj must align with some base in[k..l] and we
poseαj = max([k..l]

T

aj). In that case we must have:

e [i, j, k, l] = e [i, j, k, αj ] + (l − αj) ∗ gap_penalty

Note thatαj andβl depend only on three indices and can be precom-
puted in cubic time so that the former retrieval can then be managed
in constant time when the routines are calling an index out ofthe
matrix. The left hand case with indicesi andk is symmetric. As the
indices are not dependent, a single test on each of the four indices is
enough to have the certitude to fall back in the allocated part.

Discussion – The demonstration implicitly makes two important
assumptions that are worth emphasizing: (1) we use linear gap pen-
alty and (2) we assume that a double indel is always worse than
a substitution. The proof may not be valid for more sophisticated
scoring schemes and would also have to be adapted for more than
two sequences, where the second assumption is not always true in
an optimal multiple alignment. This points remain to be investiga-
ted. However, from a theoretical point of view, we believe that the
improvements are meaningful enough to be exposed and, from a
more practical point of view, the next section will demonstrate that
even with a simple model, either for sequence alignment and/or for
structure prediction, the important computational gain allows to use
the algorithm with success on difficult data sets that usually remain
inaccessible to other Sankoff-based methods. In the next section, we
expose a strategy to choose the constraints, we exemplify onnatural
sequences and also compare our results to a similar Sankoff-based
algorithm.

2 STRATEGY AND EXPERIMENTAL RESULTS
The algorithm we propose was implemented using a three-fold
scheme which can be summarized like this: seeking the best struc-
tural alignment among a set of suboptimal sequence alignments.
Our hypothesis is that the best structural alignment shouldnot be
so far from the best (non-structural) sequence alignment. Therefore
it makes sense to believe that the optimal alignment we seek is indeed
a subgraph of the alignment envelope, when the later was set as a
graph of suboptimal sequence alignments.

2.1 Method
We provide and discuss an implementation based on a reduced energy
model that partially takes into account the stabilizing effect of base
pair stacking in stems. Our scoring scheme for sequence alignment is
ratherempirical, too. The present implementation – namedARNICA
– was specially aimed at exemplifying the gain both in space and time
consumption when running on live sequences. We give clearevidence
that, even in that simplified form, ARNICA shows a remarkable
tendency to remain very stable in terms of performance, whatever
the characteristics of the data and proves to be competitivewith other
methods (we only compared to FOLDALIGN for simplicity, as itis
one of the prominent Sankoff-based structural alignment method).

We proceed in three steps:

• 1. Setting alignment constraints - we build the graph of aligna-
ble bases by computing all the alignments within a user-specified
distance of the optimum alignment value

• 2. Setting structural constraints - we compute all the pairing
probabilities for each sequence and filter with a threshold

• 3. Seeking common folding and alignment - we compute the
optimal structural alignment with the recursions of Sankoff

1. Setting alignment constraints – During the first phase, we use
a variant of the standard alignment with affine gap penalty (open_cost
= -80, elongation_cost = -30) reminiscent of the algorithm of Water-
man (Watermann, 1983) that gives for each pair of positions(i, j)
the score of the best alignment when the bases at positioni in the
first sequence andj in the second one are imposed to be aligned.
The variant of the algorithm has the same algorithmic complexities
than for standard alignment methods: basically the score for the best
alignment when the foreign basesi andj are imposed to be aligned
is the sum of the score for the best prefixes alignment (ie the best ali-
gnment forseq0[1..i−1] andseq1[1..j−1] ) and for the best suffixes
alignment (the best alignment ofseq0[i+1..n] andseq1[j +1..m]),
plus the cost for the substitution ofseq0[i] andseq1[j]. The exact
algorithm is just a bit more sophisticated when affine gap penalty is
in use but the complexity remains unchanged.

Then we build the (Boolean) adjacency matrix of the alignment
envelope by simply applying a threshold (thd). A pairi, j will be
allowed to align if there exists at least one alignment passing by this
coordinate for which the difference of scores with the best alignment
does not exceed thd.

δ

Fig. 6. Suboptimal alignments of two RNase P RNA (D.desulfuricans vs
A.eutrophus) showing alternative alignment paths resulting from large zones
of deletion. To reach any of these suboptimal alignments with a banding
heuristic, the value chosen for the allowed shiftδ has to encompass all the
possible paths.

The size of the 4-dimensional matrix to be allocated in the last step
obviously increases with the threshold. If the threshold ischosen to
be infinite, then the alignment envelope is the full bipartite graph and
there is no gain over the complexities of the Sankoff recursions. In
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practice however, our framework is quite effective and far more effi-
cient than any alignment banding heuristic, which is no morethan a
peculiar case of it. The algorithmic complexities for a Sankoff-based
pairwise secondary structure alignment with alignment bandingδ are
O(δ2n2) in space andO(δ3n3) in time (we suppose thatm ∼ n).
They can be reformulated asO(α2) andO(α3), whereα ∼ δn is the
size of the diagonal « band » corresponding to the alignment enve-
lope induced by the banding heuristic. More precisely,α is the size
of the true zone in the adjacency matrix of the alignment envelope.
As shown on Figure 6, this zone is an exact diagonal band in theban-
ding heuristic, whereas it can be a tunable zone in our framework.
The sequences chosen for this example show important variations in
structure, resulting in large zones of insertion / deletionat the pri-
mary level. The adjacency matrix of the alignment envelope shows
alternative paths for the sought alignment and the use of alignment
banding would imply a large value forδ to be able to reach the same
possible alignments.

2. Setting structural constraints – In the second phase, the pai-
ring probabilities are computed for each sequence with the McCaskill
algorithm (McCaskill, 1990) and the graph of possible pairings is fil-
tered: two bases for which the pairing probability is less than 1% are
not allowed to pair. This has no consequence on the computation
space/time but simply increases the quality of the solutions found by
discarding spurious base pairs.

3. Seeking common folding and alignment – Then we compute
the optimal folding and alignment with the recursions of Sankoff.
We use a linear gap penalty scheme for the alignment part of the
score and a probability-based score for the structural part. The com-
bination of two scores of different nature (alignment score, structure
probability) is a difficult issue and a full problem in itself, related
to the « paradox » of structural alignment, that is not discussed in
the present paper, we simply precise that the optimality is relative
to our model. The model we use take into account only indirectly
the stabilizing and destabilizing effects of stacking. Integrating the
full thermodynamic model would provide more biologically accu-
rate results but also call for non-straightforward developments and
adaptations. The next section demonstrate that the method already
appears competitive despite the simplicity of the model andthat it
clearly outperforms other programs based on the same recursions
when the data presents uneasy features.

2.2 Experiments
In the following we settled some experiments in which we compare
our results to FOLDALIGN. The program FOLDALIGN does not
allocate the whole needed memory at once: in the comparisons, we
always display the maximum amount of memory in use by the pro-
gram during the computation. To keep in reasonable space andtime
limits, and given that a memory allocation of several hundreds of
Mb would usually result in hours of computation, we stopped the
computation whenever the estimated needed resources for memory
were above 300Mb. All the tests were run on an IBM thinkpad T40
(pentium 1.5GHz - RAM 512Mb). For our program ARNICA, the
threshold parameter (thd) was tuned to different increasing values.
We selected two families of sequences - tRNA and RNase P RNA.
The cloverleaf structure of tRNA is known from a long time andthe
available alignments can be considered very reliable. Thisfirst data
set is aimed at testing and demonstrating the limits of the model we

are using. The second family of sequences shows deep variations in
structure, which make them difficult candidates for all Sankoff-based
methods, as mentioned by (Gardner & Giegerich, 2004).

tRNA –We selected the 20 first tRNA of the seed alignment RF00005
of the RFAM database (Griffiths-Joneset al., 2003) from which we
discarded 4 sequences that were too close in order to have a maxi-
mum pairwise sequence identity of 80% (the average on this set is
actually 59%). Each time, the predictions are compared withthe
known structure: Table 1 displays the performances of ARNICA and
FOLDALIGN on this sample set. Times are in seconds, memory
usage in Mb, specificity (spec) and sensitivity (sens) are given by the
formulas:

spec =
number of true predicted pairings

total number of predicted pairings

sens =
number of true predicted pairings

number of pairings in the known structure

The default feature of FOLDALIGN is to compute a local struc-
tural alignment with a banding valueδ = 25 but it is possible to ask
for a global alignment if the difference in length for the sequences
does not exceed 25. We display both results.

option spec sens time space

FOLDALIGN
local 87.1% 72.0% 3.6 6.6

global 86.6% 89.0% 4.5 9.6

ARNICA

thd 0 79.7% 66.8% 0.2 < 0.1
thd 10 79.5% 67.9% 0.2 < 0.1
thd 30 77.8% 69.3% 0.3 < 0.1
thd 50 76.7% 71.2% 0.3 < 0.1
thd 100 72.7% 72.6% 0.6 0.8

Table 1. Average performance of ARNICA and FOLDALIGN on a set of
tRNA [specificity (spec) - sensitivity (sens) - time in seconds - space in Mb]

When the distance threshold to the optimal alignment used in
the first phase is increased, the sensibility of ARNICA is increased
too. In the meantime, the specificity shows a decrease. The ave-
rage specificity (around 75% on this example) which is less than
the 87% of FOLDALIGN is related to the limits of the model we
use. When enlarging the threshold, the algorithm has more flexibi-
lity for the choice of pairings and, as the stabilizing effect of stems
is not taken into account in the recursions, the program often choo-
ses pairs that have higher score, regardless of their possible stacking
with neighbors. The score provided by the algorithm of McCaskill
favour pairings thatoften stack in suboptimal structuresbut this is
not enough to always drive ARNICA toward a preference for stacked
pairs. A closer look at the predicted structures reveals that this is
indeed what happens and remind us the limit of the model in use. In
compensation, we gain on this set a factor 10 both in computation
time and space requirements. On the next sample set, we focuson
a more difficult case where the performances of ARNICA remain
more or less the same in terms of specificity, overtaking the other
methods.
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RNase P –In this second sample test, we ran the two programs on
7 RNase P RNA of the alpha subdivision taken in the database of
Brown (Brown, 1999). These sequences are around 400 bases long
with an average identity rate of 64%. They have the particularity to
show large differences in length, coming from important variations
in the shared structure. We did not compute the cofolding when the
estimated size of the matrix was to exceed 300Mb. Table 2 gives
the average performances of ARNICA with different values for the
threshold, compared to FOLDALIGN ; the results for a medium
threshold of 100 are detailed in Table 3. For FOLDALIGN, we use
the default option (local alignment), as the global option can seldom
be chosen, the difference of length being too important between
the sequences. However, we indicate in Table 3 the percentage of
sequence covered by the structural alignment predicted. When this
coverage is close to 100%, the difference between local and global
is weak and comparing the performances is meaningful.

option spec sens time space

FOLDALIGN local 56.2% 40.5% 1107 142.1

ARNICA

thd 0 73.6% 43.3% 6 16.5
thd 10 74.1% 45.9% 7 16.7
thd 30 75.7% 51.0% 10 17.5
thd 50 76.2% 55.0% 20 19.1
thd 80 75.7% 58.3% 77 23.7
thd 100 74.7% 58.7% 148 29.0
thd 150 73.9% 60.5% 536 46.5
thd 200 73.2% 61.0% 1079 64.4

Table 2. Average performance of ARNICA and FOLDALIGN on a set of
RNase P (alpha subdivision) [specificity (spec) - sensitivity (sens) - time in
seconds - space in Mb]

On this data set, FOLDALIGN demonstrates a loss of impetus,
due to the restrictions imposed by the heuristics, whereas ARNICA
performs better at any point of view (specificity, sensitivity, time
and memory usage). Like in the previous experiment with tRNA,
ARNICA remains fast and low memory consuming. Here the average
gain in computational time and memory with a threshold 100 isby a
factor 7 and 5, and the correctness of ARNICA is numerically close
(the specificity is neighboring 75% for each data set). This globally
stable behavior, whereas the features and difficulty of the data are
quite different, is a promising advantage for the integration of a more
complete model.

3 CONCLUSIONS
In this paper we proposed a refinement of the heuristics commonly
used by the Sankoff-based pairwise secondary structure RNApre-
diction methods. We exposed a strategy based on the constraint
paradigm to extend the possibilities for heuristic design.We also
came back to a more simple model that constitutes the core of these
methods, for which we proved that our framework is valid. In our
ongoing developments, we aim at incorporating a more complete
thermodynamic model and refining even further the method by allo-
wing dynamic restraints on the graphs. The stability of ARNICA over
the variability of data is a major asset for our ongoing improvements.
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ARNICA FOLDALIGN

sequence 1 sequence 2 id δl spec1 sens1 spec2 sens2 time mem spec1 sens1 spec2 sens2 time mem cov

C.crescentus A.tumefaciens 68% 4 70% 69% 74% 73% 46 22.7 69% 66% 65% 62% 1428 170.5 99%
R.capsulatus A.tumefaciens 67% 3 83% 81% 82% 84% 31 21.4 59% 54% 74% 71% 1647 181.4 99%
R.capsulatus C.crescentus 67% 7 77% 58% 73% 58% 55 23.6 49% 33% 45% 32% 1090 169.9 71%
R.palustris A.tumefaciens 75% 77 77% 59% 77% 78% 87 30.1 36% 17% 42% 26% 1329 200.6 58%
R.palustris C.crescentus 65% 81 83% 57% 77% 71% 114 32.1 19% 12% 27% 23% 1840 226.5 87%
R.palustris R.capsulatus 67% 74 82% 61% 78% 74% 287 42.4 24% 16% 27% 23% 2326 262.7 91%

R.prowazekii A.tumefaciens 60% 17 75% 50% 74% 48% 37 21.3 70% 59% 66% 53% 516 79.0 87%
R.prowazekii C.crescentus 56% 13 84% 52% 80% 49% 66 24.1 65% 52% 61% 48% 423 76.1 84%
R.prowazekii R.capsulatus 56% 20 80% 47% 83% 45% 39 21.5 61% 51% 61% 48% 585 75.4 86%
R.prowazekii R.palustris 60% 94 78% 53% 81% 41% 161 31.6 35% 28% 40% 24% 554 83.9 76%

R.rubrum A.tumefaciens 74% 27 70% 57% 71% 65% 43 23.2 46% 43% 62% 65% 1991 208.6 98%
R.rubrum C.crescentus 69% 31 60% 51% 64% 61% 28 21.3 62% 57% 63% 64% 2030 214.4 97%
R.rubrum R.capsulatus 68% 24 77% 63% 81% 71% 46 24.0 68% 63% 75% 74% 2253 252.2 96%
R.rubrum R.palustris 74% 50 80% 68% 83% 60% 167 34.5 34% 30% 43% 32% 2960 299.5 91%
R.rubrum R.prowazekii 55% 44 39% 26% 59% 45% 728 57.7 66% 47% 77% 64% 588 94.4 80%

Wolbachia-sp A.tumefaciens 60% 54 67% 65% 72% 59% 71 23.2 69% 35% 69% 29% 277 65.8 51%
Wolbachia-sp C.crescentus 56% 50 72% 49% 76% 44% 95 25.3 56% 36% 61% 33% 309 66.0 64%
Wolbachia-sp R.capsulatus 59% 57 77% 73% 78% 60% 87 24.8 81% 39% 81% 31% 265 62.9 48%
Wolbachia-sp R.palustris 58% 131 81% 78% 85% 53% 744 54.5 33% 10% 57% 11% 274 69.2 28%
Wolbachia-sp R.prowazekii 67% 37 61% 42% 70% 42% 77 23.3 70% 39% 79% 34% 195 55.0 58%
Wolbachia-sp R.rubrum 60% 81 79% 76% 68% 49% 97 25.6 62% 42% 51% 26% 376 79.0 61%

average 74% 59% 76% 59% 148 29.0 54% 39% 58% 42% 1107 142.1

Table 3. Performance of ARNICA and FOLDALIGN on a set of RNase P (alphasubdivision). Each sequence is folded together with each other. We display
their percentage of identity and their difference in length(their average length is around 400 bases) [spec1 and spec2 (specificity for each of the two sequences)
- sens1 and sens2 (sensitivity) - time is in seconds - mem is inMb - cov is the percentage of sequence covered by the local alignment given by FOLDALIGN
(ARNICA is global)]
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