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ABSTRACT

Context: RNA secondary structure prediction depends on the situa-
tion: when only a few (sometimes putative) RNA homologs are
available, one of the most famous approach is based on a set of
recursions proposed by Sankoff in 1985. Although this modus ope-
randi insures an algorithmically optimal result, the main drawback lies
in its prohibitive time and space complexities. A series of heuristics
were developed to face that difficulty and turn the recursions usable.
Results: In front of the inescapable intricacy of the question when
handling the full thermodynamic model, we come back in the pre-
sent paper to a biologically simplified model that helps us focusing
on the algorithmic issues we want to overcome. We expose our
findings and forthcoming developments by using the constraint para-
digm which we believe is a powerful framework for heuristic design.
By doing so, we show that the main heuristics proposed by others
(structural and alignment banding, multi-loop restriction) can be refi-
ned in order to produce a substantial gain both in time computation
and space requirements. An implementation of our approach, named
ARNICA, exemplify that gain, specially on sample sets that often
remain unaffordable to other methods.

Availability: The sources and sample tests of ARNICA are available
at http://centria.di.fct.unl.pt/~op/arnica.tar.gz

Contact: olivier@perriquet.net

INTRODUCTION

The interest for RNA secondary structure prediction in #e deca-
des may be driven by the combination of two reasons, a bicébghe
and a theoretical one. From the biological viewpoint, RNAs®e
dary structure prediction is a challenging problem to heigding
the gap between the different levels of description of thecstre
(Marti-Renomet al.,, 2008; Shapiret al., 2007). The discovery of
new families of non-coding RNA (ncRNA) demands adaptedsttml
predict or at least provide information about their struefuand the
programs that compute secondary structure naturally @gdhem-
selves along several noticeable directions that impjid#pend on
their context of use. When the family of sequences underiders
tion is large enough and if the sequences are not too divertem
hopefully a good multiple alignment can be reached by serpien
alignment methods ((O’Brien & Higgins, 1998) assess thiaeél
lity of such methods for rRNA) or by semi-automated methddwe

*to whom correspondence should be addressed

structure prediction programs based on covariation arsa(#ddy

& Durbin, 1994; Knudsen & Hein, 2003) can then handle the ali-
gnment and they have proven to be very accurate in guessing th
structure in that context. With a small family of poorly cemged
RNA sequences, a good starting alignment can hardly be rcmast
ted, resulting usually in the inapplicability of the metlsobased
on pre-alignment. In that second context it makes senseek se
the alignment and the structure at the same time. Sankaofik(S$ia
1985) pioneered the field by exhibiting a set of recursionept-
mally compute the best structural alignment of two RNA seqes
when the structure is not known a priori. These recursiomshz
straightforwardly extended té&v sequences and can also handle
the energy parameters traditionally used for energy mirétion
(Mathewset al,, 1999). Although the time and space complexities for
two sequences remains polynomial (reSign®) andO(n*) if their
lengths are the same order of magnitudethe algorithm is not app-
licable without heuristic adaptations. From this more edagtpoint

of view, RNA structural alignment becomes a challengingopgm

in terms of algorithmic issues. Diverse heuristic ideaseasgplied

in able to turn the recursions usable. The first implemeomatf
the Sankoff recursions was DYNALIGN (Mathews & Turner, 2002
Harmanciet al, 2007) that reduced the complexity @(11°n?)

in space and)(M?>n?) in time, whereM is a (tunable) hard con-
stant which bounds the shift allowed between the two seaqsenc
Havgaarcet al. (2005, 2007) (FOLDALIGN) investigated further by
combining different other restrictions, namely:

e alignment banding: like in DYNALIGN the maximal shift
between the sequences is bounded by a conétant

e structural banding: the default behavior for the program is to
perform a local alignment and the maximal size for a common
motif is bounded by

e multi-loop restriction: the structure bifurcativity is limited in
multi-loops

The resulting space and time complexities in FOLDALIGN beeo
0(n>X\é) and0(n*X\?5?). The Vienna RNA Package also proposes
an alternative attempt PMComp (Hofacketr al., 2004) which is
implemented as part of the RNAfold program and makes useeof th
McCaskill algorithm to compute the probabilities of baséripgs

for a single sequence (McCaskill, 1990). The authors of FALD
LIGN then revisited the idea by integrating their bandingifietic

to PMComp (Torarinssoat al., 2007).

© Oxford University Press 2009.
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Although these heuristics allow the application of the alhm
of Sankoff on natural RNA sequences, still remain some odcant
contexts where the method stays inapplicable. When theesegs
under consideration show a large difference of length, pmor-
servation at the primary level or important structural a#ions, all
Sankoff-based method either do not apply or—if they do —&meling
heuristics prevent the algorithm from finding the correctisture,
while the memory and time consumption explodes. One of tha ma
drawbacks of this kind of heuristics is their global natuhery cannot
take advantage of local similarities in the sequences. \iegfor-
ming a global structural alignment, the shift restrictioshould be at
least the difference of length between the sequences. FQLBER
bypass the later difficulty by doing local alignment as a ditfaeha-
vior. In this paper we prove that the banding can be local,ctvhi
results in a huge gain, both in memory and time consumptiom. W
also propose a strategy to guaranty optimality in our frapréveven
if we are using a heuristic. Our proposal could be improvétdiere
combined with other heuristics (for instance a branchirggrietion
like the bifurcation constraint of FOLDALIGN) but with thess
of the guaranty for optimality. The strategy is presenteteims of
constraints, we believe indeed that the constraint panadaready
in use for other kind of methods, like CONSAN (Dowell & Eddy,
2006) or STEMLOC (Holmes, 2005)) is helpful and relevant tuiel
the forthcoming improvements of our method. We observe ttiat
recursions of Sankoff are a natural combination of the twalkiof
recursions it is supposed to extend: sequence alignmengeah-
dary structure prediction. Likewise, a structural aligmheay be

modeled as a subgraph of a combination of two graphs - an ali-

gnment graph and a folding graph. Imposing structural caimgs
on those graphs may lead to efficient heuristic design. Ttieasiof
FOLDALIGN already proposed a combination of constrainteach
of these graphs, namely alignment banding and structuralibg ;
we propose a framework that allows more accurate conssraint

1 APPLYING CONSTRAINTS ON THE
RECURSIONS OF SANKOFF

Alignments -An alignment of two sequences may be seen as a sub-

graph of the full bipartite graph where the nodes are theaese
positions in each sequence. Such a subgraph (see Figursdifis
to be an alignment if the following conditions (1) and (2) dhol
Moreover, we impose the extra restriction of maximality (3)

(1) the arity of each node is at most one

(2) there is no crossing edge (we assume the nodes are pieited i
sequence order)

(3) no edge can be added without breaking one of the two former
requirements

ba

be

a2 a3 a4 as
bs by bs

Fig. 1. An alignment can be seen as a subgraph of the full bipartéaetgr
we highlighted here the subgraph corresponding to a sarligtexeent

If the graph were not maximal in the sense of (3), it would mean
that somewhere a deletion followed by an insertion wouldrieégp-
red to a substitution. When the edges and remaining freeskzase
weighted according to the usual scoring schemes for twoesegs,
with linear or affine gap penalties (Needleman & Wunsch, 1970
Eppsteinet al, 1988, 1992,b) such an alignment is automatically
disqualified, since an appropriate shift of the correspogdiases
would result immediately in an alignment of better score.

Secondary structure ©nce again we consider the sequence as a list
of nodes drawn in increasing order. Following the usual d&im a
secondary structure is a subgraph of the full graph on thedeswith

no crossing edge when drawn in a half plane (a so called datexp
graph) and for which the node arities are at most one.

[
b1

[
b

S I
bs by bs bs

bs b

Fig. 2. A secondary structure and the corresponding subgraph

In our framework, a structural alignment of two sequencestzE
represented as a combination of three graphs: an alignnmephg
and two structure graphs, like in Figure 3. In the followimgg will
call structural envelope any supergraph (built in the same fashion)
that contains the structural alignment we seek.

[
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[

] ]

as a4 as
ba bs
] ]

b

be

Fig. 3. Example of a structural alignment seen as a subgraph ofitststal
envelope. The structural envelope holds no constraint here

In practice, the structural envelope is not the full graplor F
instance the steric constraints of the molecule imply thatrhini-

mal size for a loop should be three bases, consequently we can
already remove all the edges that do not fulfill that constralin

the next section, we investigate how the efficiency of thertigm

can be improved when extra constraints are imposed on thetsital
envelope.

The recursions of SankoffFhe recursion set used in RNA predic-
tion methods based on free energy minimization (Jaegel, 1989;
Zuker et al,, 1999; Zuker, 2003; Hofacker, 2003) is a more com-
plex version of the Nussinov formulas (Nussinov & Jacob4&g0).
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These formulas, in return, can be seen as such an energy iaaim
tion method in the oversimplified model where each pairingnts
for one. Likewise, we express here the recursions given Ink&a

FOLDALIGN would give for any index a list of contiguous basss
fixed lengthd where the value fof is a global constant.
Our claim is that we just need to allocate for each gajr) a

in the same simplified model and we discuss later how far we carsquare matrix of sizél/; x M; (Figure 5). The value in the cell

extend it to a more sophisticated model with no loss in coriple

We note seqo seqo[l..n] and seq: seqi[1..m] the two
sequences in use. The Sankoff recursions in the simplifiedeino
of weighted pairing maximization are:

eli,j, k1] .= MAX

eeli,j—1,k,1— 1] + align_base(seqolj], seq1[l])
eeli,j,k,l— 1] + gap_penalty()
eeli,j— 1,k 1] + gap_penalty()
eeli,z— 1L, kyy—1]+elz+1,j—1,y+ 1,1 —1]+
match_pair(seqo[z], seqo[j], seqi[y], seqi[l])
i<z<j] [k<y<]]

The valuee [1,n, 1,m] gives the best score for a structural ali-
gnment in that model. Any of the corresponding best aligrisean
be retrieved in linear time by tracing back into the dynantimgpam-
ming matrix if the corresponding pairings that maximize Hoere
were stored during the search, which would require 6h? ) space.
In that form, the Sankoff recursions appear to be a comlunaif
the recursions for sequence alignment (Smith & Waterma81119
and the recursions for secondary structure prediction afsiov.
The algorithm can integrate any Boolean restraints imp¢isgdhe
user or by automated methods) on the structural enveloparphs
assigning an infinite score to the forbidden matches. Whathoey
is that these constraints can be used to reduce both membtinzan
consumption.

Constraining the alignment n the following, any pair of objects
(bases, indices, segments...) are caltedign if they do not belong

to the same sequence. Two foreign bases (or their index in the

sequence) are said to latignables if they are allowed to parti-
cipate to the final alignment. The resulting subgraph isechthe
alignment envelope. In Figure 4, we show such an alignment enve-
lope where we only represented the edges for two foreigrcexdi
For a given indexi of arity M; in the first sequence, we note
a; = a;[0 .. M;] = { as[0] , .., a;[M;] } the list of its aligna-
ble bases, and for in the second sequence, of arit, the list of

its alignable bases in the first sequence is néfed

be[0]  Oi[1] i bi[Ni] i

I3
L] °

a;[ M)

a;[d]

Fig. 4. On the left are represented the listsand b, of alignable bases for
some indices andk. We note)M; the length ofa; and N, the length oby,.
The figure on the right shows the list of contiguous indicesafo arbitrary
index: when using a sequence banding heuristic with a fixed globsteat
4, like in DYNALIGN and FOLDALIGN.

[, 7, z,y] stores the score for the best structural alignment between
the segmentseqo[i..j] andseqi[ai[z]..a:[y]]. When looking a bit
closely to the recursion formulas, it appears that duriregagbmpu-
tation process, we may fall out of the allocated part. We gritnat
the best structural alignment between any segmenisi..;j] and
seqi [k..l] can be retrieved in constant time from the allocated part.
Figure 5 displays a possible layout for the 4-dimensionatima
where the outer matrix is related to the first sequence andrtta-
ler inner matrices to the second one. But the modeling isadlgtu
perfectly symmetric. Likewise, if we had focused on the seco
sequence and allocated the inner matrices based on théliatsd
bi, the overall matrix would result in exactly the same sizee Th
size of this 4-dimensional matri_ ; ) M; x M; = (32, M;)? =
(3, Nip)? = >y Vi x Ny is the square product of the number of
edges in the alignment envelope, and the matrix itself cacobsi-
dered as labeled by the edges of the alignment envelopeAdail
[i, 7, z,y] is indeed related to the unique pair of edges:;[z]) and

(7> asly])-

a;[0]

a;[M;]

m

Fig. 5. The 4-dimensional matrix used for the computation of the beesc-
tural alignment can be represented as a bi-dimensionalixnaach cell
being a bi-dimensional matrix. The value in the céllj, z,y| stores the
score for the best structural alignment between the segnegg|:..j] and
seqilai[x]..aily]].

Claim — The scoree [i, j, k, ] can be retrieved in constant time
from the reduced matrix of Figure 5.

Proof — Let's assume that during the computatier(z, j, k, []
falls out of the allocated matrix. This means that eithandk are
not alignable and/oj and! are not alignable. We detail the right
hand case, the other one is symmetric. Given two non-empaygfio
segment§..j] and[k..l], if j andl are notalignable then eithgalign
with some base ifk..l], or [ with some base ifi..j]. Otherwise;j
and! would both create an indel and the optimal alignment of the tw
segments would then result in a double indel which was pusio
assumed to be more expensive than a substitution. Let'sesBist
thatl aligns with a base ifi..j]. Consequentlyi..j] () b # 0. Let's
call ; = max([i..j] () bi). Every base of the segméfi.;:..j] has
no alignable partner ifk..l] or it would contradict the maximality of

Alignable bases in a list do not need to be contiguous in thesd;. The remaining sequenceqo[Gi+1..7] has no other possibility

sequence. The sequence banding heuristic used in DYNALI&N a

than being deleted, resulting i @— ;) long gap in the alignment.
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This gives: e 1. Settingalignment constraints- we build the graph of aligna-
ble bases by computing all the alignments within a userifipdc
eli, j, k1] =eli, B,k 1]+ (j — (i) * gap_penalty distance of the optimum alignment value
. . . e 2. Setting structural constraints - we compute all the pairing
If I does not align, thep must align with some base jk../] and we probabilities for each sequence and filter with a threshold

posea; = maz([k..l] () a;). In that case we must have: e 3. Seeking common folding and alignment - we compute the

o o optimal structural alignment with the recursions of Saffikof
e [7‘7.]7 k: l] =e [17.]7 kv Oéj] + (l - Oéj) * gap_penalty
o 1. Setting alignment constraints— During the first phase, we use
Note thato; andf5; depend only on three indices and can be precom-y 4 rjant of the standard alignment with affine gap penaig(o cost
puted in cubic time so that the former retrieval can then beagad  _ -80, elongation_cost = -30) reminiscent of the algorittfiater-
in constant time when the routines are calling an index ouhef .o (Watermann_, 1983) that gives for each pair of positiang)
matrix. The left hand case with indicéandk is symmetric. Asthe  ha score of the best alignment when the bases at posifiotthe
indices are not dependent, a single test on each of the fdiseislis {5t sequence angl in the second one are imposed to be aligned.
enough to have the certitude to fall back in the allocated par The variant of the algorithm has the same algorithmic comifiss
Discussion — The demonstration 'WP"C"t'Y makes two important than, for standard alignment methods: basically the scarthébest
assumptions that are worth emphasizing: (1) we use lingapga-  5jignment when the foreign baseand;j are imposed to be aligned
alty and (2) we assume that a double indel is always worse thagy the sum of the score for the best prefixes alignmierthé best ali-
a substitution. The proof may not be valid for more soph&8d  gnment forseqo[1..i— 1] andseqi [1..j — 1] ) and for the best suffixes
scoring schemes and would also have to be_ ad_apted for mare th%lignment (the best alignment efqo [i + 1..n] andseq: [j + 1..m)),
two sequences, where the second assumption is not alwa&/stru s the cost for the substitution 6éqo[i] and seq: [j]. The exact
an optimal multiple alignment. This points remain to be BlGa- 5 qorithm is just a bit more sophisticated when affine gapigris
ted. However, from a theoretical point of view, we believattthe " se but the complexity remains unchanged.
improvements are meaningful enough to be exposed and, from & rhen e build the (Boolean) adjacency matrix of the alignmen
more p.ractlca.tl point of wew,lthe next section W|Illdemoawrthat envelope by simply applying a threshold (thd). A paij will be
even with a simple model, either for sequence alignmentoaridf 5 16\ved to align if there exists at least one alignment pagby this

structure prediction, the important computational galove to use oo dinate for which the difference of scores with the béghanent
the algorithm with success on difficult data sets that uguatinain - 45as not exceed thd.

inaccessible to other Sankoff-based methods. In the netibeewe

expose a strategy to choose the constraints, we exemplifiatumal

sequences and also compare our results to a similar Saokeéd . . . T T T
algorithm. e

2 STRATEGY AND EXPERIMENTAL RESULTS

The algorithm we propose was implemented using a three-fold
scheme which can be summarized like this: seeking the best st 2
tural alignment among a set of suboptimal sequence aligtemen . ”
Our hypothesis is that the best structural alignment shaoldbe i e
so far from the best (non-structural) sequence alignmemrdfore B L7 e
itmakes sense to believe that the optimal alignment we sdeééed [ 22

a subgraph of the alignment envelope, when the later wasssat a e i

graph of suboptimal sequence alignments. . >

T
\

2.1 Method - . . . . .

We provide and discuss animplementation based on aredoeegie
model that partially takes into account the stabilizingeffof base
pair stacking in stems. Our scoring scheme for sequenceraégt is

Fig. 6. Suboptimal alignments of two RNase P RNA (D.desulfuricass v

rather empirical, too. The presentimplementation —naANI CA A'eUthhus) showing alternative a"gnmem. paths .rmmom Iar.ge zones
of deletion. To reach any of these suboptimal alignment$ witbanding

—was Spef:lally aimed at.exemp.llfylng the gain both ',n Spaphlme heuristic, the value chosen for the allowed shittas to encompass all the
consumption when running on live sequences. We give cléderve possible paths.

that, even in that simplified form, ARNICA shows a remarkable
tendency to remain very stable in terms of performance, et
the characteristics of the data and proves to be competittheother
methods (we only compared to FOLDALIGN for simplicity, assit
one of the prominent Sankoff-based structural alignmenhow.

The size of the 4-dimensional matrix to be allocated in teedtep
obviously increases with the threshold. If the thresholchissen to
be infinite, then the alignment envelope is the full bipargtaph and
We proceed in three steps: there is no gain over the complexities of the Sankoff reamsi In
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practice however, our framework is quite effective and fareneffi-
cient than any alignment banding heuristic, which is no ntbaa a
peculiar case of it. The algorithmic complexities for a Safftbased
pairwise secondary structure alignment with alignmentiag are
0(6%n?) in space and(6°n?*) in time (we suppose that ~ n).
They can be reformulated 85 o) andO(a?), wherea: ~ dn isthe
size of the diagonal « band » corresponding to the alignmarg-e
lope induced by the banding heuristic. More preciseljs the size

of thetrue zone in the adjacency matrix of the alignment envelope.

As shown on Figure 6, this zone is an exact diagonal band inahe
ding heuristic, whereas it can be a tunable zone in our frasmew
The sequences chosen for this example show importantieensan
structure, resulting in large zones of insertion / deletirthe pri-
mary level. The adjacency matrix of the alignment enveldp@\s
alternative paths for the sought alignment and the use gfiaent
banding would imply a large value férto be able to reach the same
possible alignments.

2. Setting structural constraints— In the second phase, the pai-
ring probabilities are computed for each sequence with tb€askill
algorithm (McCaskill, 1990) and the graph of possible pajsiis fil-
tered: two bases for which the pairing probability is lesath% are
not allowed to pair. This has no consequence on the compntati
space/time but simply increases the quality of the solstfonnd by
discarding spurious base pairs.

3. Seeking common folding and alignment — Then we compute
the optimal folding and alignment with the recursions of I&#h
We use a linear gap penalty scheme for the alignment parteof th
score and a probability-based score for the structural pag com-
bination of two scores of different nature (alignment s¢staucture
probability) is a difficult issue and a full problem in itsetelated
to the « paradox » of structural alignment, that is not disedsin
the present paper, we simply precise that the optimalitglistive
to our model. The model we use take into account only indirect
the stabilizing and destabilizing effects of stackingefrating the
full thermodynamic model would provide more biologicallgcal-
rate results but also call for non-straightforward deveiepts and
adaptations. The next section demonstrate that the metrexatig
appears competitive despite the simplicity of the model tuad it
clearly outperforms other programs based on the same iensrs
when the data presents uneasy features.

2.2 Experiments

In the following we settled some experiments in which we carap
our results to FOLDALIGN. The program FOLDALIGN does not
allocate the whole needed memory at once: in the comparisens

are using. The second family of sequences shows deep vasati
structure, which make them difficult candidates for all Safftkased
methods, as mentioned by (Gardner & Giegerich, 2004).

tRNA —We selected the 20 first tRNA of the seed alignment RFO0005
of the RFAM database (Griffiths-Jonesal.,, 2003) from which we
discarded 4 sequences that were too close in order to haveia ma
mum pairwise sequence identity of 80% (the average on thiis se
actually 59%). Each time, the predictions are compared with
known structure: Table 1 displays the performances of ARN&Gd
FOLDALIGN on this sample set. Times are in seconds, memory
usage in Mb, specificity (spec) and sensitivity (sens) arergby the
formulas:

number of true predicted pairings

spec= total number of predicted pairings

number of true predicted pairings

sens = — -
number of pairings in the known structure

The default feature of FOLDALIGN is to compute a local struc-
tural alignment with a banding valde= 25 but it is possible to ask
for a global alignment if the difference in length for the segces
does not exceed 25. We display both results.

option spec sens | time | space
local 87.1% | 72.0% | 3.6 6.6
FOLDALIGN global 86.6% | 89.0% | 4.5 9.6
thd O 79.7% | 66.8% | 0.2 <0.1
thd 10 | 79.5% | 67.9% | 0.2 <0.1
thd30 | 77.8% | 69.3% | 0.3 | <0.1
ARNICA thd50 | 76.7% | 71.2% | 0.3 <0.1
thd 100 | 72.7% | 72.6% | 0.6 0.8

Table 1. Average performance of ARNICA and FOLDALIGN on a set of
tRNA [specificity (spec) - sensitivity (sens) - time in sedsn space in Mb]

When the distance threshold to the optimal alignment used in
the first phase is increased, the sensibility of ARNICA iséased
too. In the meantime, the specificity shows a decrease. Tée av
rage specificity (around 75% on this example) which is less th
the 87% of FOLDALIGN is related to the limits of the model we
use. When enlarging the threshold, the algorithm has maxifie
lity for the choice of pairings and, as the stabilizing effeEstems

always display the maximum amount of memory in use by the pro-s not taken into account in the recursions, the programmatteo-

gram during the computation. To keep in reasonable spacéraad
limits, and given that a memory allocation of several huddref

Mb would usually result in hours of computation, we stoppeel t
computation whenever the estimated needed resources fopbrye

ses pairs that have higher score, regardless of their pessdxking
with neighbors. The score provided by the algorithm of Mdalas
favour pairings thabften stack in suboptimal structurésit this is
not enough to always drive ARNICA toward a preference focleta

were above 300Mb. All the tests were run on an IBM thinkpad T40pairs. A closer look at the predicted structures reveals tifia is

(pentium 1.5GHz - RAM 512Mb). For our program ARNICA, the
threshold parameter (thd) was tuned to different increpsalues.

indeed what happens and remind us the limit of the model inlase
compensation, we gain on this set a factor 10 both in comipatat

We selected two families of sequences - tRNA and RNase P RNAtime and space requirements. On the next sample set, we docus

The cloverleaf structure of tRNA is known from a long time ahd
available alignments can be considered very reliable. fitsisdata
set is aimed at testing and demonstrating the limits of thdehae

a more difficult case where the performances of ARNICA remain
more or less the same in terms of specificity, overtaking thero
methods.
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RNase P -n this second sample test, we ran the two programs orREFERENCES

7 RNase P RNA of the alpha subdivision taken in the database Qfjown, Jw. (1999) The Ribonuclease P databaseNAR,

27 (314).

Brown (Brown, 1999). These sequences are around 400 basgs 0 http:// ww. nbi 0. ncsu. edu/ RNaseP/ .

with an average identity rate of 64%. They have the partrtylto
show large differences in length, coming from importantaions
in the shared structure. We did not compute the cofoldingnithe

Dowell, R. D. & Eddy, S. R. (2006) Efficient pairwise rna stiure prediction and
alignment using sequence alignment constraiBMC Bioinformatics,7, 400+.

Eddy, S.R.. & Durbin, R. (1994) RNA sequence analysis usavguiance modelNAR,
22,2079-2088.

estimated size of the matrix was to exceed 300Mb. Table 2givegppstein, D., Galil, Z. & Giancarlo, R. (1988) Speeding upayic programming. In

the average performances of ARNICA with different valuestfe

Proceedings of the29th IEEE Annual Symposium on Foundatict@omputer Science

threshold, compared to FOLDALIGN ; the results for a medium _ PP- 488-496 IEEE Computer Society Press, White Plains, NY.

threshold of 100 are detailed in Table 3. For FOLDALIGN, we us
the default option (local alignment), as the global optian seldom
be chosen, the difference of length being too important betw
the sequences. However, we indicate in Table 3 the percemiag
sequence covered by the structural alignment predictederiithis
coverage is close to 100%, the difference between local &oizhly
is weak and comparing the performances is meaningful.

option spec sens | time | space
FOLDALIGN local 56.2% | 40.5% | 1107 | 142.1
thd 0 73.6% | 43.3% 6 16.5
thd 10 | 74.1% | 45.9% 7 16.7
thd30 | 75.7% | 51.0% | 10 17.5
thd50 | 76.2% | 55.0% | 20 19.1
ARNICA thd80 | 75.7% | 58.3% | 77 23.7
thd 100 | 74.7% | 58.7% | 148 29.0
thd 150 | 73.9% | 60.5% | 536 46.5
thd 200 | 73.2% | 61.0% | 1079 | 64.4

Table 2. Average performance of ARNICA and FOLDALIGN on a set of
RNase P (alpha subdivision) [specificity (spec) - sengjtiigens) - time in
seconds - space in Mb]

On this data set, FOLDALIGN demonstrates a loss of impetus

due to the restrictions imposed by the heuristics, wherdRNIEA
performs better at any point of view (specificity, sensitivitime

and memory usage). Like in the previous experiment with tRNA

ARNICA remains fast and low memory consuming. Here the ayera
gain in computational time and memory with a threshold 10yia
factor 7 and 5, and the correctness of ARNICA is numericdthge
(the specificity is neighboring 75% for each data set). Thobajly
stable behavior, whereas the features and difficulty of tia dre
quite different, is a promising advantage for the integnatf a more
complete model.

3 CONCLUSIONS

In this paper we proposed a refinement of the heuristics camhymo
used by the Sankoff-based pairwise secondary structure RNEA

diction methods. We exposed a strategy based on the cartstrai

paradigm to extend the possibilities for heuristic desigfe also
came back to a more simple model that constitutes the coreeét
methods, for which we proved that our framework is valid. b o

ongoing developments, we aim at incorporating a more cam@ple

thermodynamic model and refining even further the methodlby a
wing dynamic restraints on the graphs. The stability of ARNlover
the variability of data is a major asset for our ongoing invenments.
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Constraint-based strategy for pairwise RNA secondary structure prediction

ARNICA FOLDALIGN

sequence 1 sequence 2 id ol specl | sensl | spec2 | sens2 | time | mem specl| sensl| spec2| sens2| time [ mem | cov

C.crescentus| A.tumefaciens|| 68% 4 70% 69% 74% 73% 46 22.7 69% 66% 65% 62% | 1428 | 170.5 | 99%
R.capsulatus| A.tumefaciens|| 67% 3 83% 81% 82% 84% 31 214 59% 54% 74% 71% | 1647 | 181.4 | 99%
R.capsulatus| C.crescentus || 67% 7 7% 58% 73% 58% 55 23.6 49% 33% 45% 32% | 1090 | 169.9 | 71%
R.palustris A.tumefaciens|| 75% 7 7% 59% 7% 78% 87 30.1 36% 17% 42% 26% | 1329 | 200.6 | 58%
R.palustris C.crescentus || 65% | 81 83% 57% 1% 71% 114 321 19% 12% 27% 23% | 1840 | 226.5 | 87%
R.palustris R.capsulatus 67% 74 82% 61% 78% 74% 287 424 24% 16% 27% 23% | 2326 | 262.7 | 91%
R.prowazekii | A.tumefaciens|| 60% | 17 75% 50% 74% 48% 37 21.3 70% | 59% 66% 53% 516 79.0 | 87%
R.prowazekii | C.crescentus || 56% | 13 84% 52% 80% 49% 66 24.1 65% | 52% 61% | 48% 423 76.1 | 84%
R.prowazekii R.capsulatus 56% 20 80% 47% 83% 45% 39 215 61% 51% 61% 48% 585 75.4 | 86%
R.prowazekii R.palustris 60% [ 94 78% 53% 81% 41% 161 31.6 35% | 28% | 40% 24% 554 83.9 | 76%
R.rubrum A.tumefaciens || 74% | 27 70% 57% 71% 65% 43 232 46% 43% 62% 65% | 1991 [ 208.6 | 98%
R.rubrum C.crescentus || 69% 31 60% 51% 64% 61% 28 21.3 62% 57% 63% 64% | 2030 | 214.4 | 97%
R.rubrum R.capsulatus || 68% | 24 1% 63% 81% 71% 46 24.0 68% 63% 75% 74% | 2253 | 252.2 | 96%
R.rubrum R.palustris 74% 50 80% 68% 83% 60% 167 345 34% 30% 43% 32% | 2960 | 299.5 | 91%
R.rubrum R.prowazekii 55% | 44 39% 26% 59% 45% 728 57.7 66% 47% 7% 64% 588 94.4 | 80%
Wolbachia-sp| A.tumefaciens|| 60% | 54 67% 65% 2% 59% 71 23.2 69% | 35% 69% 29% 277 65.8 | 51%
Wolbachia-sp| C.crescentus || 56% 50 2% 49% 76% 44% 95 253 56% 36% 61% 33% 309 66.0 | 64%
Wolbachia-sp| R.capsulatus || 59% | 57 1% 73% 78% 60% 87 24.8 81% | 39% 81% 31% 265 62.9 | 48%
Wolbachia-sp R.palustris 58% | 131 81% 78% 85% 53% 744 54.5 33% 10% 57% 11% 274 69.2 | 28%
Wolbachia-sp| R.prowazekii 67% 37 61% 42% 70% 42% 77 233 70% 39% 79% 34% 195 55.0 | 58%
Wolbachia-sp R.rubrum 60% | 81 79% 76% 68% 49% 97 25.6 62% | 42% | 51% | 26% | 376 79.0 | 61%

average 74% 59% 76% 59% 148 29.0 54% 39% 58% 42% | 1107 | 142.1

Table 3. Performance of ARNICA and FOLDALIGN on a set of RNase P (alphldivision). Each sequence is folded together with edoérotVe display
their percentage of identity and their difference in len@tieir average length is around 400 bases) [specl and speeéficity for each of the two sequences)
- sensl and sens2 (sensitivity) - time is in seconds - memNAbin cov is the percentage of sequence covered by the locgiraént given by FOLDALIGN
(ARNICA is global)]




