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Abstract. We address in this paper the problem of protein structure
prediction from Nuclear Magnetic Resonance data (NMR). We revisit
the constraint programming approach we initiated in [KB02] and define
a simpler model, where only the protein backbone is considered, which
has the obvious advantage of dealing with one order of magnitude fewer
atoms but also poses other problems, namely a less constrained problem,
where the structure of the backbone defined by the existing constraints
is less defined when compared with the full protein model. In this paper
we describe our findings, concentrating on the alternative modelings that
we have been addressing, together with the preliminary results obtained.

1 Introduction

Protein structure prediction is a fundamental problem in Bioinformatics, since
it is well known that the 3D shape of a protein strongly determines the ligands
(other proteins, viruses, smaller molecules as drugs, etc) with which it may
interact, and hence strongly determines its functioning.

Notwithstanding the research on ab initio methods that aim at finding pro-
tein shape from first principles (minimization of some energy function), with
simplified models (e.g. the lattice model [HL92]) or by connecting homologue
components (Rosetta [KRB99]), other methods aim at integrating experimental
data (either from X-Ray crystallography, or Nuclear Magnetic Resonance-NMR)
in the determination of the protein structure.

This was the option we have been adopting with PSICO [KB02] by devel-
oping a constraint programming approach to handle the distance constraints
provided by NMR experiments. Although competitive with other methods that
use meta-heuristics local search alone [GMW97], the propagation of all the dis-
tance constraints is quite fast but not as precise. In fact, improving the initial
solutions through constraint propagation alone is very costly, especially when all
the atoms of the protein are considered.

Therefore, we have been testing a simpler model, where only the protein
backbone (in fact the alpha-carbons of the protein residues) are considered. This
has the obvious advantage of dealing with fewer atoms (one order of magnitude
fewer) which is of great importance in combinatorial problems. Nonetheless, it
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poses other problems, namely a less constrained problem, where the structure of
the backbone defined by the existing constraints is less defined when compared
with the full protein model.

In this paper we describe our findings, concentrating on the alternative mod-
elings that we have been addressing, together with the preliminary results ob-
tained. We first recall the main features of the model used so far (some formal-
ization is provided to describe the latest improvements). Then we present our
simpler model and its promising behavior on experimental data sets.

2 Improvements on the PSICO algorithm

We start with a brief overview of the PSICO (Processing Structural Information
with Constraint propagation and Optimization) algorithm. More details can be
found in [KB02]. The first stage of the PSICO algorithm builds a molecular
structure that is an approximate solution to a set of geometric constraints. This
structure is generated by reducing the three-dimensional domains representing
the possible positions of the atoms until all domains are smaller than a threshold
value in all dimensions (typically 2Å), or until there is excessive backtracking
(typically a upper limit of 100 backtracking steps). This approximate solution is
then refined in the second stage by a local search optimization algorithm. The
idea is to provide the local search algorithm with the best possible initial guess
without increasing computation time.

The geometrical constraints can be distance constraints between atom pairs
[KB02] or constraints on the angles or relative placements of atoms in rigid
groups [KB03], but this paper considers only the case of pairwise distance con-
straints. In this framework the constraints are propagated by either reducing
the size of an atom domain or by inserting exclusion volumes inside the domain
region. To make this process efficient and tractable the domains are represented
by sets of cuboid volumes. One cuboid represents the boundaries of the domain
(Good region), and a set of zero or more non-overlapping cuboids contained
within the larger cuboid represents the exclusion volumes (NoGoods set) which
the atom is known not to occupy. Constraints on the upper limit of the distance
between two atoms are propagated by reducing the Good region. Constraints
on the lower limit of the distance between two atoms are propagated by adding
cuboids to the NoGoods set.

This representation of the domains has the useful property of preserving the
shape of its elements, since all intersections of cuboids result in either empty
domains or cuboids. However, this requires the distance constraints to be con-
verted from the standard Euclidean formulation, where a distance to a point
defines a sphere in three dimensions. Instead of this sphere, a constraint on the
upper limits of the distance is considered to be the smallest cube containing
the Euclidean distance sphere, whereas a constraint on the lower distance limits
is considered to be the largest cube contained in the sphere. This weakens the
constraints but ensures that no correct solutions are excluded by propagation.
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Propagation is achieved by enforcing arc-consistency on these cuboid domains
with this constraint representation. Once the system is arc-consistent, there is a
partial enumeration step where one domain is split in two equal parts across its
longest dimension. One part is discarded and arc-consistency is again enforced
to propagate this change. The domains are selected for splitting in a round-robin
schedule, whereby each domain is selected once before any domain is selected
again. During each cycle the smallest domains are selected first (a first-fail ap-
proach), but all domains that are below the size threshold are excluded from
this enumeration procedure. Backtracking involves selecting the alternative half
of each domain.

The local search could start from any configuration but its performance
clearly depends on the accuracy of the guess used as a starting point. When
the first stage is cut short due to excessive backtracking, the local search is pro-
vided with a configuration that may be quite distant from the true structure
and therefore as meaningful as a random start. In the following we first provide
a mathematical formalization which may be considered a guideline of all the
improvements we did, then we show the origin of this excessive backtracking
and how our tentatives to overcome the problem led us to change the modeling
itself.

2.1 Approximating spheres (l2) by spheres (l∞)

Mathematical context – Given two subsets A and A′ of an affine space, we
define the sum A + A′ as {a + a′, a ∈ A, a′ ∈ A′} (Fig. 1). Later everything
happens in the affine space IR3. The notation A refers to the complementary
set of A in IR3. We call Sphere(δ) the three dimensional sphere of radius δ and
origin 0 (the sphere for the Euclidean norm l2), and Cube(δ) the cube of edge
length 2δ centered in 0 (the sphere for the norm l∞). We shall be using the usual
approximation of l2 by l∞ and two straightforward properties of the sum:

A + A′

A
A′

0

Fig. 1. The sum A + A′ = {a + a′, a ∈ A, a′ ∈ A′} of two affine subsets.

[norm]: Cube(δ/
√

3) ⊂ Sphere(δ) ⊂ Cube(δ)
[incl]: if B ⊂ C then (A + B) ⊂ (A + C)

[cubo]: Cuboids are stable both under intersection and sum

From the definition, it follows that:
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distl2(a, b) ≥ δ ⇐⇒ a ∈ ({b}+ Sphere(δ))
distl2(a, b) ≤ δ ⇐⇒ a ∈ ({b}+ Sphere(δ))

And:

distl2(a, b) ≥ δ for all b ∈ B ⇐⇒ a ∈ (B + Sphere(δ))
distl2(a, b) ≤ δ for all b ∈ B ⇐⇒ a ∈ (B + Sphere(δ))

Modeling – A Euclidean constraint between 2 atoms is a pair ∆ = (δmin, δmax)
which denotes the minimum and maximum distances allowed between them. The
domain of an atom ai is defined as Domi = Goodi ∩ NoGoodsi where Goodi is
a cuboid and NoGoodsi is a union of cuboids to be removed. The initial Goodi

are the whole space (in fact an arbitrary large cuboid), the initial NoGoodsi are
empty. The In constraints refer to δmax, the Out constraints to δmin.

Cube(δmin/
√

3)

Cube(δmax)

δmin

δmax

Cube(δmin/
√

3) ⊂ Sphere(δmin) ⊂ Sphere(δmax) ⊂ Cube(δmax)

Fig. 2. Approximation of two embedded Euclidean spheres by cuboids.

Selecting the values – The selection is made by bisection on the Good regions.
We use a First Fail heuristic (prune as soon as possible the search tree) by
bisecting across the largest dimension among x, y, z, and selecting the half
which is the less likely to contain the atom (the half that intersect the most the
other domains).

Propagating the In constraints – If we were strictly following the Euclidean
model, the directional propagation of the In constraint from a Goodi region to
another Goodj region should be: Goodj ←− Goodj ∩ (Goodi + Sphere(δmax)).
In our simplified model, however, Goodj was set as a cuboid at the beginning
and we want it to stay a cuboid. Thus we use the properties [incl], [cubo] and
[norm] (see the approximation of two embedded spheres Fig. 2) to overestimate
a bit the reduction of Goodj : Goodj ←− Goodj ∩ (Goodi + Cube(δmax)).

Propagating the Out constraints – Following the same idea (the NoGoods re-
gions must stay the complement of a list of cuboids), we underestimate the prop-
agation of Out constraints: NoGoodsj ←− NoGoodsj ∩ (Goodi +Sphere(δmin))
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by the slightly smaller: NoGoodsj ←− NoGoodsj ∩ (Goodi + Cube(δmin/
√

3)).
With [norm], [incl], [cubo], it follows that NoGoodsj stays a union of cuboids.
These transformation rules in hand, we handle them with a classical arc prop-
agation algorithm [Mac75]. During the propagation of NoGoods , the algorithm
needs to ensure they do not overlap to be able to compute the total volume, check
if the domain is empty, and fail when it is. Both the list of NoGoods and their
scope during propagation should be bounded to avoid a combinatorial explosion.

2.2 Discussion about over-backtracking

We usually observe a propensity for backtracking and we believe this behavior
has two causes. In this section we identify the first one and describe how we
worked the problem. In the next section, we propose an alternative modeling
to address the second cause. The propagation rules for In and Out constraints
ensure the local consistency within the cuboid model, which is a relaxation of
the actual distance geometry problem. Once a solution is found, we have the
guarantee that it is globally consistent within the cuboid model, although it
may not fulfill the initial Euclidean restraints. When running the solver on a
small polyhedron (tens of atoms), the model quickly provides a solution that
is consistent within the simplified model, but not in the Euclidean one. The
cuboid approximation increases the slack on the actual Euclidean constraints,
with the corners of the cuboids allowing solutions that would be forbidden by the
constraints. The simplest way to correct this is to test the Euclidean constraints
during propagation:

if Goodj ∩ (Goodi + Sphere(δmax)) is empty then fail
else Goodj ←− Goodj ∩ (Goodi + Cube(δmax)) end if

However, this test increases backtracking, especially at the later stages of the
enumeration. This and the added expense of propagating the Out constraints
itself makes the computation impractical. To overcome the problem, we designed
an alternative representation of forbidden regions, where we drop the dual view
Good vs. NoGoods to consider the domains as (possibly) non convex.

(back)
c3

c1 c4

(front)
c6

c5

c2

δmax

δmin

CuboidList(∆, 6) = ∪k=1..6 ck

Fig. 3. Approximation of the embedded Euclidean spheres by a cuboid list (a collection
of possibly overlapping cuboids). Here is represented the approximation for a list of
size N = 6, which is obviously a minimum to model the hole inside the spheres.
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Modeling – The use of NoGoods regions is equivalent to a modeling of non
convex domains (the NoGoods regions are actually digging holes into the Good

region). Instead of removing forbidden parts from the cuboid which represents
the current domain, we model the domain by a union of (possibly overlapping)
cuboids Domi = ∪N

k=1Cuboidi,k. A common bound N is fixed on the number of
cuboids (typically N = 6 is a minimum to approximate an Euclidean sphere, as
may be seen on Fig. 3). This new representation offers a better approximation
of the Euclidean constraints and reduces the previous artifact (hence a fail may
occur sooner). Furthermore, we neither need to ensure the non overlapping of
the NoGoods regions nor to separate the propagation of In and Out constraints.

Selecting the values – We select either one cuboid if the size of the list is
greater than one, or we bisect the remaining cuboid if the list is a singleton. Our
default heuristic is a First Fail choice, as previously.

Constraints propagation – The definition of sum is extended in a natural
way to a collection of sets: {Ai}i∈I +{A′

j}j∈J := {Ai +A′

j}(i,j)∈I×J (see Fig. 4).

A + C

A + B

0

B

A
C

Fig. 4. The sum A + {B, C} = {A + B, A + C} . Note that we are really considering
a collection of sets, not a union (B and C may overlap for instance).

During the propagation step, the cuboids of two lists are pairwise compared
and we regularly take the convex hull of some cuboids formed during the process
in order to keep the list size bounded by N .

Algorithm 1 - Propagate (Domain Dj , Domain Di, Constraint ∆)

for all Cuboid c in Dj do

TempList ←− ∅
for all Cuboid c′ in Di do

TempList ←− [ TempList, c ∩ (c′ + CuboidList(∆, N)) ]
end for

c ←− ConvexHull (TempList)
end for

Although the handling of lists obviously slows down the process, the propaga-
tion of Out constraints is made more efficiently and therefore can be deployed all
along search. The improvement should also be seen through a more theoretical
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scope. The model actually brings a new feature: the union of cuboids represents
a disjunction of constraints, and is adequate to model constraint ambiguity. It
also offers a larger choice than a simple bisection for the value selection. This
feature can help design better heuristics and improve the search of a solution.
In the next section we show how we improve the model in this manner and we
discuss the uniqueness of the solution.

3 Improving the model: back to discrete domains

Since the exact position of the atoms are not assigned during search, and we have,
for each atom, only a domain to be reduced, the heuristics we designed are based
on the properties of these domains, namely the volumes of intersecting cuboids.
A wrong guess early in the search often leads to unacceptable backtracking. To
overcome the problem we focus on the modeling itself to help design more precise
heuristics, especially at the beginning of the search process, when the atoms are
dispatched in space. We assume that a nearly correct positioning of the protein
backbone is enough to start the second stage and in the following we work at
the backbone level, where only the Cα atoms are modeled. This has the obvious
advantage of dealing with much less atoms.

3.1 The model

Discrete modeling – If n is the length of the sequence of residues of the
protein, we define the variables [xi] = (x1, x2, x3, .., xn) as the 3D positions of
the corresponding Cα in the sequence. The protein is assumed to remain within a
cube of a given predefined size, this cube is discretized in p3 small cells, providing
the same finite domain for all the variables: Di = [1..p]3. Each value of these
domains is called a cell, the size of a cell is chosen in order to avoid two Cα being
in the same cell (2Å is convenient, with regard to the minimum distance between
two Cα in any protein), and p is arbitrarily fixed according to the assumption
of the diameter of the molecule. The molecule may be seen as discretized to
a low resolution and the underlying distance geometry problem projected to
this low resolution. Once a solution is found (every domain being reduced to
a singleton), we assign to the corresponding variable the position of the center
of the remaining cell. Note however that our model is different from the lattice
model [Wil02], as we assume during search that the atom can be anywhere in
the cell.

Selecting the values – Considering a structure solution, there are different
ways to embed it into the low resolution model. Even if three Cα are fixed (to
break all the Euclidean symmetries), this triangle of atoms would still have some
looseness, due to the size of the cells, and the constraints themselves are somehow
looser than the actual Euclidean constraints (see Fig. 5). Hence, a single solution
of the actual problem, admits many representations in the model. This looseness
endows the model with the interesting property that the solutions can be reached
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Fig. 5. Approximation of the embedded spheres in the discrete model (we drew the
median section in 2D). The domain of a Cα, built up with p3 cells, reduces to the gray
cells under a constraint ∆ = (δmin, δmax).

straightforwardly or with little backtracking. This property justifies our choice
for the selection heuristics: we select the variables by decreasing order of domain
size and label the values randomly.

Propagating – Arc consistency is computed with an adaptation of AC6 [Bes94].
Note that on some test samples (see the experimental results in the next section),
forward checking was enough to find the solution with almost no backtracking.
Note that the number of variables (∼ 102) is here very small compared to the
size of the domains (∼ 104).

3.2 Performances of the model on different networks

For all the tests we used the same protocol. The proteins of the test set are
actual proteins from which the structure is known (the exact atomic positions
stored in a PDB file). The features that are really meaningful with regard to our
solver are their length and diameter.

The protocol – We calculate the distances between all pairs of Cα from the
known positions of the atoms (the PDB files), and simulate different constraint
networks, by either adding slack on the full graph, or decreasing thickness, or
both. Our aim is to test the robustness of the model with regard to these relax-
ations. The final target is a graph that really simulates NMR data (only some
short range distances with a slack). The default cell size is 2Å. Two Cα are fixed
at the beginning: the Cα we assume closest to the center is fixed in the center
cell of its domain, and its next neighbor on the backbone is fixed two cells apart.
The two first propagation steps are only forward checking. In all the forthcom-
ing examples, the average is taken on 20 independent runs, and for each run, a
timeout is fixed at 10 min. All the distances are in Å, all the time measurements
in seconds.
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RMSD TIME

sample (reference) diam. n p n × p3

1000
min : avg : max ± stdev avg

smpl-1 (RCSB011828) 25.1 Å 41 15 138 1.77 : 1.98 : 2.15 ± 0.11 0.25

smpl-5 (1KOE.part) 31.7 Å 50 18 292 1.77 : 2.07 : 2.29 ± 0.13 0.95

smpl-2 (RCSB009932) 35.2 Å 71 20 568 1.60 : 1.74 : 1.93 ± 0.09 2.30

smpl-8 (1BNL.part) 39.5 Å 60 22 639 1.94 : 2.20 : 2.47 ± 0.17 1.70

smpl-4 (RCSB001509) 37.2 Å 87 21 806 1.58 : 1.72 : 1.82 ± 0.06 7.20

smpl-7 (RCSB016762) 38.3 Å 97 22 1033 1.57 : 1.65 : 1.84 ± 0.07 5.40

smpl-3 (RCSB009965) 38.3 Å 124 22 1320 1.51 : 1.57 : 1.69 ± 0.05 9.80

smpl-6 (RCSB015705) 44.8 Å 92 25 1438 1.70 : 1.87 : 2.06 ± 0.12 4.95

Table 1. Experimental results with the full network of distances and no slack. We
display the characteristics of the protein (diameter, length n) and the corresponding
domain size. We calculated the RMSD between the structure found and the known
3D structure: we show the minimum, the maximum and the average RMSD, plus the
standard deviation obtained on 20 independent runs. We also display the average time
in seconds on a 1.5GHz pentium. smpl-5 and smpl-8 are partial proteins arbitrarily cut
after 50 (resp. 60) residues, showing that the program also works on fragments.

On the full Graph (Table 1) – First we focus on the case where all the exact
distances between Cα are provided (the full graph with no slack). With the full
network of exact distances, we have an easy distance geometry problem from
which the solution could be retrieved in linear time [DW02]. What we intend
to prove is the empirical correctness of our algorithm. We say that a solution
matches the structure when its RMSD with the known structure is the same
order of magnitude than the resolution. Table 1 shows that all the solutions
produced match the true structure and that the solution is reached very fast.
It is worth noting that although with the full graph of distances the structure
solution is unique, its projection to low dimension is not. In practice we observe
that the subspace of potential solutions becomes large enough to be explored
with little backtracking.

On different reductions to the full graph (Table 2) – Different reductions
are applied to the full graph of constraints and we observe the reaction of the
solver. We separately test the robustness of the solver toward these different
relaxations to the constraints. The network being relaxed, then the number of
solutions is larger but they are paradoxically more difficult to retrieve: the solver
is more likely to backtrack, as the filters (constraint propagation) do not reduce
enough the domains. This can be seen for instance with the rising number of
timeouts while we increase the slack (Table 2, smpl-7). We observe that the
method is robust to slack (see smpl-7) and sparseness (see smpl-2). A RMSD
up to 6Å usually shows a correct dispatching of the backbone into space. With
only short range distance, there is a propensity for gathering in the center (as
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scope slack keep RMSD TIME
(Å) (%) (%) min : avg : max ± stdev avg

graph density (smpl-2)

0 .. ∞ ± 0 100 1.60 : 1.74 : 1.93 ± 0.09 2.30

0 .. ∞ ± 0 10 4.36 : 5.00 : 6.05 ± 0.53 140.00 (7)

sensitivity to slack (smpl-7)

0 .. ∞ ± 0 100 1.58 : 1.73 : 1.83 ± 0.07 4.30

0 .. ∞ ± 10 100 2.75 : 3.11 : 3.79 ± 0.25 7.42 (1)
0 .. ∞ ± 20 100 3.72 : 4.69 : 6.23 ± 0.68 21.33 (2)
0 .. ∞ ± 20 50 4.06 : 5.09 : 6.26 ± 0.66 171.44 (2)
0 .. ∞ ± 30 100 4.92 : 6.28 : 8.37 ± 1.07 45.53 (3)
0 .. ∞ ± 40 100 5.18 : 7.54 : 9.50 ± 1.42 92.33 (5)

long range influence (smpl-4)

0 .. 9 ± 10 100 7.42 : 8.69 : 10.74 ± 0.78 345.33 (8)
0 .. 9 : 30 .. ∞ ± 10 100 6.52 : 7.81 : 8.79 ± 0.79 344.00 (10)
0 .. 9 : 25 .. ∞ ± 10 100 4.69 : 6.02 : 7.51 ± 0.79 306.36 (9)

Table 2. Behavior of the model on different types of reductions and relaxations on the
full graph of distances. The scope is a cutoff on the distance, either low or/and high:
0 .. 9 for instance means that we only keep constraints smaller than 9Å. We indicate
the slack added and subtracted to the constraints, and the percentage of constraints
we keep on the full graph. We display the number of timeouts (in parenthesis after
the time) ; the time and RMSD measurements were taken on the remainder.

observed in the cuboid model), and search needs some counterbalance: on smpl-4,
we notice the beneficial effect of adding long range distances.

Using a heuristic based on shortest paths (Table 3) – We just observed that
long range distances improve the quality of the solution, though the constraints
coming from NMR have the peculiarity to be only short range distances. Thus
we try to infer long range constraints from the topology of the network itself: in
the weighted graph of distances (the weight being the average distance (δmin +
δmax)/2), the shortest path between any pair of unconnected Cα is computed
via Dijkstra’s algorithm [CLRS01]. Although this measure may be quite larger
than the actual distance, it may be used as a very relaxed constraint (we display
the correlation between the shortest path and the actual distance on smpl-1 in
Table 3). We used this measure as a heuristic by adding, for a given shortest
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Distance in Å between 2 atoms in function of their shortest path in the constraint
network (smpl-1 – scope = 9Å– keep = 50%).

scope slack keep RMSD TIME
(Å) (%) (%) min : avg : max ± stdev avg

0 .. 9 ± 10 50 5.36 : 7.02 : 8.30 ± 0.70 5.35

0 .. 9 (*) ± 10 50 4.31 : 5.19 : 6.17 ± 0.47 5.15

Table 3. Using a heuristic based on the shortest path (smpl-1). In the second test
(marked by a star), we added, for a given shortest path length, the minimum value
that we statistically observed in the correlation graph (see above).

path length, the minimum value that we statistically observed in the correlation
graph. The benefits of the heuristic are evident (see Table 3) and invite us to
explore this approach of adding loose distance constraints, given the robustness
of our new model with regard to these constraints.

4 Conclusion and further work

Dealing with an approximate model has advantages and disadvantages. The
model might be difficult to handle with precision but it can be robust to slack
in the constraints, and projecting NMR constraints onto the backbone results a
looser constraint network. The modeling of a problem is far from being canonical,
thus we focused here on the modeling itself. In this paper we started from the
model we initiated in [KB99] and showed how we could improve both its precision
(thus a better manipulation for the design of heuristics) and its accuracy when
submitted to loose constraints (short range distances, sparseness and slack).
These improvements allow us to use the model at the backbone level, whereas
the usual methods for protein structure prediction would hardly cope with loose
distances, due to the propagation of errors when the distances have some slack.
We found a promising model, which is robust to looseness in the constraints, and
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can retrieve solutions with little backtracking. Our ongoing work focuses on the
design of efficient heuristics in that model, with a smarter use of the features of
the constraint network to infer long range distances.
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